Module 2: Exercises: Consequences

Problem 1

	Heat of reaction 100 kJ/kg reaction mass	Heat of decomposition 2000 kJ/kg reaction mass
Adiabatic temperature rise c'p= 2 kJ/(kg·K)	$\Delta Tad = \frac{100 kJ/kg}{2 \frac{kJ}{kg \cdot K}} = 50K$	$\Delta Tad = 1000K$
Mass of methanol to be evaporated per kg of reaction mass Heat of evaporation of methanol Q' = 1100 kJ/kg MeOH	$m_{vap} = rac{100 rac{kJ}{kg}}{1100 rac{kJ}{kg \; MeOH}}$ $= 0.1 \; rac{kg \; MeOH}{kg}$	$m_{vap} = 1.8 rac{kg MeOH}{kg}$ This is not possible. There can't be more than 1 kg MeOH in 1 kg reaction mass
Potential mechanic energy: height per kg of reaction mass	$h = \frac{100'000 \frac{J}{kg}}{1kg \cdot 9.81 \frac{m}{s^2}}$ $= 10'000m$	$h = 200 \ km$
Kinetic energy: achieved speed per kg of reaction mass	$v = \sqrt{\frac{2 \cdot 100'000 \frac{J}{kg}}{1kg}}$ $= 447 \text{ m/s}$ This is 1.5 times the speed of sound!	v = 2000 m/s This is more than 6 times the speed of sound!

A heat of reaction of 100 kJ/kg is rather low. A heat of decomposition of 2000 kJ/kg is already very high

An energy also has units of 1 J = 1 N·m = 1 W·s = 1 kg·m²·s⁻²

The result show that conversion of reaction energy into more common forms of energy leads to impressive numbers.